Asymptotic Behaviour of Best I_p -Approximations from Affine Subspaces¹

J. M. Quesada², J. Martínez-Moreno and J. Navas

Departamento de Matemáticas, Universidad de Jaén, Paraje las Lagunillas, Campus Universitario, 23701 Jaén, Spain E-mail: jquesada@ujaen.es, jmmoreno@ujaen.es jnavas@ujaen.es

Communicated by Günther Nürnberger

Received November 26, 2001; accepted in revised form June 26, 2002

In this paper we consider the problem of best approximation in ℓ_p^n , $1 . If <math>h_p$, $1 , denotes the best <math>\ell_p$ -approximation of the element $h \in \mathbb{R}^n$ from a proper affine subspace *K* of \mathbb{R}^n , $h \notin K$, then $\lim_{p\to\infty} h_p = h_{\infty}^*$, where h_{∞}^* is a best uniform approximation of *h* from *K*, the so-called strict uniform approximation. Our aim is to prove that for all $r \in \mathbb{N}$ there are $\alpha_j \in \mathbb{R}^n$, $1 \le j \le r$, such that

$$h_p = h_{\infty}^* + \frac{\alpha_1}{p-1} + \frac{\alpha_2}{(p-1)^2} + \dots + \frac{\alpha_r}{(p-1)^r} + \gamma_p^{(r)},$$

with $\gamma_p^{(r)} \in \mathbb{R}^n$ and $||\gamma_p^{(r)}|| = \mathcal{O}(p^{-r-1})$. © 2002 Elsevier Science (USA)

Key Words: strict best approximation; rate of convergence; Polya algorithm; asymptotic expansion.

1. INTRODUCTION

For $x = (x(1), x(2), ..., x(n)) \in \mathbb{R}^n$, the ℓ_p -norms, $1 \leq p \leq \infty$, are defined by

$$||x||_{p} = \left(\sum_{j=1}^{n} |x(j)|^{p}\right)^{1/p}, \qquad 1 \le p < \infty,$$

$$||x||\,\coloneqq ||x||_\infty = \max_{1\leqslant j\leqslant n}\,|x(j)|.$$

¹This work was partially supported by Junta de Andalucía, Research Groups 0178, 0268 and by Ministerio de Ciencia y Tecnología, Project BFM2000-0911.

²To whom correspondence should be addressed.

Let $K \neq \emptyset$ be a subset of \mathbb{R}^n . For $h \in \mathbb{R}^n \setminus K$ and $1 \leq p \leq \infty$ we say that $h_p \in K$ is a best ℓ_p -approximation of h from K if

$$||h_p - h||_p \leq ||f - h||_p$$
 for all $f \in K$.

If *K* is a closed set of \mathbb{R}^n , then the existence of h_p is guaranteed. Moreover, there exists a unique best ℓ_p -approximation if *K* is a closed convex set and 1 . Throughout this paper,*K* $denotes a proper affine subspace of <math>\mathbb{R}^n$. Without loss of generality we will assume that h = 0 and $0 \notin K$. It is well known (see for instance [8]) that h_p , $1 , is the best <math>\ell_p$ -approximation of 0 from *K* if and only if

$$\sum_{j=1}^{n} (h_p(j) - f(j)) |h_p(j)|^{p-1} \operatorname{sgn}(h_p(j)) = 0 \quad \text{for all } f \in K.$$
(1)

Writing $K = f_0 + \mathscr{V}$ for some $f_0 \in K$ and \mathscr{V} a linear subspace of \mathbb{R}^n , then (1) is just equivalent to

$$\sum_{j=1}^{n} v(j) |h_p(j)|^{p-1} \operatorname{sgn}(h_p(j)) = 0 \quad \text{for all } v \in \mathscr{V}.$$
(2)

In the case $p = \infty$ we will say that h_{∞} is a best uniform approximation of 0 from K. In general, the unicity of the best uniform approximation is not guaranteed. However, an unique "strict uniform approximation," h_{∞}^* , can be defined [4, 7]. It is known [1, 5, 7] that if K is an affine subspace of \mathbb{R}^n , then

$$\lim_{p\to\infty} h_p = h_\infty^*.$$

In the literature, the convergence above is called Polya algorithm and occurs at a rate no worse than 1/p, (see [2, 5]). The aim of this paper is to prove that the best ℓ_p -approximation h_p has an asymptotic expansion of the form

$$h_p = h_{\infty}^* + \frac{\alpha_1}{p-1} + \frac{\alpha_2}{(p-1)^2} + \dots + \frac{\alpha_r}{(p-1)^r} + \gamma_p^{(r)},$$

for some $\alpha_j \in \mathbb{R}^n$, $1 \leq j \leq r$, $\gamma_p^{(r)} \in \mathbb{R}^n$ and $||\gamma_p^{(r)}|| = \mathcal{O}(p^{-r-1})$.

In [5] the authors give a necessary and sufficient condition on K for

$$p||h_p - h_{\infty}^*|| \to 0 \qquad \text{as } p \to \infty$$
(3)

and in [6] it is proved that if (3) holds then there is a number 0 < a < 1 such that $p ||h_p - h_{\infty}^*||/a^p$ is bounded. In particular, this result implies that if (3) holds, then we have an exponential rate of convergence of h_p to h_{∞}^* as $p \to \infty$ and so the asymptotic expansion of h_p follows immediately with

 $\alpha_l = 0, \ 1 \le l \le r$, for all $r \in \mathbb{N}$. In the next section, as a consequence of Theorem 2.1, we will deduce the conditions on *K* such that this situation occurs.

2. NOTATION AND PRELIMINARY RESULTS

Without loss of generality, we will assume that $||h_{\infty}^{*}|| = 1$, $h_{\infty}^{*}(j) \ge 0$, $1 \le j \le n$, and that the coordinates of h_{∞}^{*} are in decreasing order. Let $1 = d_1 > d_2 > \cdots > d_s \ge 0$ denote all the different values of $h_{\infty}^{*}(j)$, $1 \le j \le n$, and $\{J_l\}_{l=1}^s$ the partition of $J := \{1, 2, \ldots, n\}$ defined by $J_l := \{j \in J : h_{\infty}^{*}(j) = d_l\}$, $1 \le l \le s$. We henceforth put $s_0 = s$ if $d_s > 0$ and $s_0 = s - 1$ if $d_s = 0$.

We can write $K = h_{\infty}^* + \mathscr{V}$, where \mathscr{V} is a proper linear subspace of \mathbb{R}^n . It is possible to choose a basis $\mathscr{B} = \{v_1, v_2, \dots, v_m\}$ of \mathscr{V} and a partition $\{I_k\}_{k=1}^s$ of $I := \{1, 2, \dots, m\}$ such that for all $i \in I_k$, $1 \leq k \leq s$,

(p1)
$$v_i(j) = 0, \forall j \in J_l, 1 \leq l < k$$
,

(p2) $v_i(j) \neq 0$ for some $j \in J_k$.

The set of indices I_k could be empty for some k, $1 \le k \le s$. However, for simplicity of notation, we suppose that $I_k \ne \emptyset$ for $1 \le k \le s_0$, this involves no loss of generality.

We will use the following result [5, 6].

THEOREM 2.1. Under the above conditions, let

$$a = \max_{1 \le l,k \le r} \left\{ d_l / d_k : \sum_{j \in J_l} v_i(j) \neq 0 \quad \text{for some } i \in I_k \right\},\tag{4}$$

where a is assumed to be 0 if $\sum_{j \in J_l} v_i(j) = 0$ for all $i \in I_k$, $1 \leq k, l \leq s_0$. Then there are $L_1, L_2 > 0$ such that

$$L_1 a^p \leq p ||h_p - h_\infty^*|| \leq L_2 a^p, \quad \forall p > 1.$$
 (5)

The following notation will be also used in the next section. We put $I_0 = \bigcup_{k=1}^{s_0} I_k$, $m_0 = \operatorname{card}(I_0)$, $J_0 = \bigcup_{l=1}^{s_0} J_l$ and we consider the matrices $M = (v_i(j))_{(i,j)\in I_0\times J_0}$ and $M_{kl} = (v_i(j))_{(i,j)\in I_k\times J_l}$, $1 \le k, l \le s_0$. Finally, we denote by A^T the transpose of the matrix A and by ||A|| the row-sum norm of A.

LEMMA 2.1. If $\{x_p\}$ is a sequence of real numbers such that $p |x_p| \to 0$ as $p \to \infty$, then

$$(1+x_p)^p = 1 + p \, x_p + R_p,$$

with $R_p = o(p |x_p|)$.

Proof. The proof follows immediately from the application of Taylor's formula to the function $\varphi(z) = (1+z)^p$ at z = 0.

In the next formula we use the following standard notation. Let $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$ and $k \in \mathbb{N}$. If $\mathbf{r} = (r_1, r_2, \dots, r_k) \in \mathbb{N}_0^k$ and $\mathbf{a} = \{a_j\}_{j \in \mathbb{N}}$ is a sequence of real numbers, then we define $|\mathbf{r}| := r_1 + r_2 + \dots + r_k$, $\mathbf{r}! := r_1! r_2! \cdots r_k!$ and $\mathbf{a}^{\mathbf{r}} = a_1^{r_1} a_2^{r_2} \cdots a_k^{r_k}$. Also, for $i \in \mathbb{N}$, we denote $\mathscr{G}(k, i) := \{\mathbf{r} \in \mathbb{N}_0^k : \sum_{i=1}^k jr_i = i\}$.

Let $\mathbf{a} = \{a_j\}_{j \in \mathbb{N}}$ and $\mathbf{b} = \{b_j\}_{j \in \mathbb{N}}$ be two sequences of real numbers and $m, n \in \mathbb{N}$. An easy computation gives

$$f_{m,n}(z) \coloneqq \sum_{j=1}^{n} b_j \left(\sum_{i=1}^{m} a_i z^i \right)^j = \sum_{i=1}^{mn} \sum_{\mathbf{r} \in \mathscr{G}(m,i)} \frac{|\mathbf{r}|!}{\mathbf{r}!} b_{|\mathbf{r}|} \mathbf{a}^{\mathbf{r}} z^i$$

Applying the above formula and the Rolle Theorem we easily obtain the expansion of known functions. For example, taking $b_j = 1/j!, j = 1, 2, ...,$ we get

$$\exp\left[a_1z + \dots + a_kz^k\right] = 1 + \sum_{i=1}^k \sum_{r \in \mathscr{G}(k,i)} \frac{\mathbf{a}^r}{\mathbf{r}!} z^i + \mathscr{O}(z^{k+1}).$$

Analogously, taking $b_j = (-1)^{j-1}/j$, j = 1, 2, ..., we have

$$\frac{1}{z}\log(1+a_1z+\cdots+a_kz^k) = \sum_{i=1}^{k+1} \sum_{r\in\mathscr{G}(k,i)} \frac{(-1)^{|\mathbf{r}|-1}(|\mathbf{r}|-1)!}{\mathbf{r}!} \mathbf{a}^{\mathbf{r}} z^{i-1} + \mathcal{O}(z^{k+1}).$$

Now we could use the formulas above to obtain explicitly the asymptotic expansion of order k of the expression

$$\left(1+\frac{a_1}{p}+\cdots+\frac{a_k}{p^k}\right)^p = \exp\left[p\log\left(1+\frac{a_1}{p}+\cdots+\frac{a_k}{p^k}\right)\right].$$

However, in order to simplify the notation, we resume these observations in the following result.

LEMMA 2.2. Let $k \in \mathbb{N}$ and $a_l \in \mathbb{R}$, $1 \leq l \leq k$. Then there are $c_l \in \mathbb{R}$, $1 \leq l \leq k$, with $c_l = c_l(a_1, \ldots, a_l)$, such that

$$\left(1+\frac{a_1}{p}+\cdots+\frac{a_k}{p^r}\right)^p = c_0 + \frac{c_1}{p} + \cdots + \frac{c_k}{p^k} + \mathcal{O}\left(\frac{1}{p^{k+1}}\right),$$

where $c_0 = e^{a_1}$.

For $v \in \mathcal{V}$, $v \neq 0$, and $1 \leq t \leq s$, let $J_t[v]$ be the set of indices j in J_t such that $v(j) \neq 0$ and define

$$t_v \coloneqq \min\{t \in \{1, \ldots, s\} : J_t[v] \neq \emptyset\}$$
 and $\hat{J}_{t_v} \coloneqq J_{t_v}[v]$.

Also, if $J' \subset J$ we denote by $|| \cdot ||_{J'}$ the restriction of the norm $|| \cdot ||$ to the set of indices in J'.

LEMMA 2.3. Suppose that there are $\alpha_l \in \mathcal{V}$, $1 \leq l \leq r$, such that

$$h_p = h_{\infty}^* + \sum_{l=1}^r \frac{\alpha_l}{(p-1)^l} + \gamma_p^{(r)},$$

where $(p-1)^{\tau}\gamma_p^{(r)} \to 0$ as $p \to \infty$ for some $\tau \in \mathbb{N}$. Let $v \in \mathcal{V}$, $v \neq 0$, and suppose that $||\alpha_l||_{\mathbf{j}_{t_v}} \neq 0$ for some $l \in \{0, 1, \ldots, r\}$, where $\alpha_0 \coloneqq h_{\infty}^*$. Define

 $l_v \coloneqq \min\{l \in \{0, 1, \dots, r\} : \alpha_l(j) \neq 0 \text{ for some } j \in \hat{\boldsymbol{J}}_{t_v}\}$

and let $\hat{J}_{t_v}^0$ be the set of indices in \hat{J}_{t_v} such that $|\alpha_{l_v}(j)| = ||\alpha_{l_v}||_{\hat{J}_{t_v}}$. Then

$$\sum_{j \in \hat{J}_{l_v}^0} v(j)c_l(j) \operatorname{sgn}(\alpha_{l_v}(j)) = 0, \qquad 0 \le l \le \tau - l_v - 1, \tag{6}$$

where, for each $j \in \hat{J}_{l_v}$, the coefficients $c_l(j)$ are given by Lemma 2.2 with $a_l = \alpha_{l+l_v}(j)/\alpha_{l_v}(j), 1 \leq l \leq r-l_v$ and $k = r-l_v$.

Proof. Note that we can assume that $l_v < \tau$; otherwise the condition in (6) is empty. Applying (2), we have

$$\sum_{j \in J} v(j) |h_p(j)|^{p-1} \operatorname{sgn}(h_p(j)) = 0,$$

and so, multiplying by $((p-1)^{l_v}/||\alpha_{l_v}||_{\hat{J}_{l_v}})^{p-1}$,

$$\sum_{j \in J} v(j) \left| (p-1)^{l_v} \frac{h_p(j)}{||\alpha_{l_v}||_{\mathbf{j}_{t_v}}} \right|^{p-1} \operatorname{sgn}(h_p(j)) = 0.$$
(7)

If $j \in \hat{J}_{l_v}^0$, then, since $(p-1)^{l_v} \gamma_p^{(r)}(j) \to 0$ as $p \to \infty$, we have, for p large enough, $\operatorname{sgn}(h_p(j)) = \operatorname{sgn}(\alpha_{l_v}(j))$ and

$$(p-1)^{l_v} \frac{|h_p(j)|}{||\alpha_{l_v}||_{j_{l_v}}} = 1 + \sum_{l=l_v+1}^r \frac{\alpha_l(j)/\alpha_{l_v}(j)}{(p-1)^{l-l_v}} + (p-1)^{l_v} \frac{\gamma_p^{(r)}(j)}{\alpha_{l_v}(j)}$$

Also, since $(p-1)^{l_v+1}\gamma_p^{(r)}(j) \to 0$ as $p \to \infty$, we can apply Lemma 2.1 to obtain

$$\left(1 + \sum_{l=l_{v}+1}^{r} \frac{\alpha_{l}(j)/\alpha_{l_{v}}(j)}{(p-1)^{l-l_{v}}} + (p-1)^{l_{v}} \frac{\gamma_{p}^{(r)}(j)}{\alpha_{l_{v}}(j)}\right)^{p-1} \\
= \beta_{p}(j)^{p-1} \left(1 + (p-1)^{l_{v}} \frac{\gamma_{p}^{(r)}(j)}{\beta_{p}(j)\alpha_{l_{v}}(j)}\right)^{p-1} \\
= \beta_{p}(j)^{p-1} + (p-1)^{l_{v}+1} \beta_{p}(j)^{p-2} \frac{\gamma_{p}^{(r)}(j)}{\alpha_{l_{v}}(j)} (1 + R_{p}(j)),$$
(8)

where $R_p(j) = o(1)$ and $\beta_p(j) = 1 + \sum_{l=l_v+1}^r \frac{\alpha_l(j)/\alpha_{l_v}(j)}{(p-1)^{l-l_v}}$. Now, from Lemma 2.2, we have

$$\beta_p(j)^{p-1} = \left(1 + \sum_{l=l_v+1}^r \frac{\alpha_l(j)/\alpha_{l_v}(j)}{(p-1)^{l-l_v}}\right)^{p-1} = \sum_{l=0}^{r-l_v} \frac{c_l(j)}{(p-1)^l} + E_p(j), \quad (9)$$

with $E_p(j) = \mathcal{O}((p-1)^{l_v-r-1})$ and the coefficients $c_l(j), 0 \le l \le r - l_v$, depend on $\alpha_l(j), l_v \le l \le r$.

On the other hand, if $j \in J \setminus \hat{J}_{t_v}^0$ and $v(j) \neq 0$, then

$$\begin{split} \lim_{p \to \infty} & (p-1)^{l_v} \frac{|h_p(j)|}{||\alpha_{l_v}||_{\hat{\boldsymbol{J}}_{l_v}}} \\ & = \lim_{p \to \infty} \left| \sum_{l=l_v}^r \frac{\alpha_l(j)/||\alpha_{l_v}||_{\hat{\boldsymbol{J}}_{l_v}}}{(p-1)^{l-l_v}} + (p-1)^{l_v} \frac{\gamma_p^{(r)}(j)}{||\alpha_{l_v}||_{\hat{\boldsymbol{J}}_{l_v}}} \right| = \frac{|\alpha_{l_v}(j)|}{||\alpha_{l_v}||_{\hat{\boldsymbol{J}}_{l_v}}} < 1. \end{split}$$

From (8) and (9), Eq. (7) can be written as

$$\sum_{j \in J, \mathbf{J}_{l_{v}}^{0}} v(j) \left| (p-1)^{l_{v}} \frac{h_{p}(j)}{||\alpha_{l_{v}}||_{\mathbf{j}_{l_{v}}}} \right|^{p-1} \operatorname{sgn}(h_{p}(j)) + \sum_{j \in \mathbf{J}_{l_{v}}^{0}} \sum_{l=0}^{r-l_{v}} \frac{v(j)c_{l}(j)}{(p-1)^{l}} \operatorname{sgn}(\alpha_{l_{v}}(j)) + \sum_{j \in \mathbf{J}_{l_{v}}^{0}} u(j)E_{p}(j) \operatorname{sgn}(\alpha_{l_{v}}(j)) + (p-1)^{l_{v}+1} \sum_{j \in \mathbf{J}_{l_{v}}^{0}} v(j)\beta_{p}(j)^{p-2} \frac{\gamma_{p}^{(r)}(j)}{|\alpha_{l_{v}}(j)|} (1+R_{p}(j)) = 0.$$
(10)

Finally, multiplying (10) by $(p-1)^l$, $0 \le l \le \tau - l_v - 1$, and taking limits as $p \to \infty$ we conclude (6).

If $l_v \leq \tau$, taking into account (6) and multiplying (10) by $(p-1)^{\tau-l_v}$, we can write for short,

$$\sum_{j \in \tilde{J}_{t_v}^0} v(j) c_{\tau - l_v}(j) \operatorname{sgn}(\alpha_{l_v}(j)) + (p - 1)^{\tau + 1} \sum_{j \in \tilde{J}_{t_v}^0} v(j) \beta_p(j)^{p - 2} \frac{\gamma_p^{(r)}(j)}{|\alpha_{l_v}(j)|} (1 + R_p(j)) + W_p = 0, \quad (11)$$

where $W_p = o(1)$.

3. ASYMPTOTIC BEHAVIOUR OF BEST ℓ_p -APPROXIMATIONS

THEOREM 3.1. Let K be a proper affine subspace of \mathbb{R}^n , $0 \notin \mathbb{K}$. For $1 , let <math>h_p$ denote the best ℓ_p -approximation of 0 from K and let h_{∞}^* be the strict uniform approximation. Then, for all $r \in \mathbb{N}$, there are $\alpha_l \in \mathbb{R}^n$, $1 \leq l \leq r$, such that

$$h_p = h_{\infty}^* + \frac{\alpha_1}{p-1} + \dots + \frac{\alpha_r}{(p-1)^r} + \gamma_p^{(r)},$$
(12)

where $\gamma_p^{(r)} \in \mathbb{R}^n$ and $||\gamma_p^{(r)}|| = \mathcal{O}(p^{-r-1})$.

Proof. Since $p ||h_p - h_{\infty}^*||$ is bounded [2, 5], the proof follows immediately by induction on r with the help of Lemmas 3.1 and 3.2.

LEMMA 3.1. Under the same conditions of Theorem 3.1, let $r \in \mathbb{N}$ and suppose that there are $\alpha_l \in \mathcal{V}$, $1 \leq l \leq r-1$, such that

$$h_p = h_\infty^* + \sum_{l=1}^{r-1} \frac{\alpha_l}{(p-1)^l} + \gamma_p^{(r-1)}.$$

If there exists $\alpha_r := \lim_{p \to \infty} (p-1)^r \gamma_p^{(r-1)}$, then $(p-1)^{r+1} ||\gamma_p^{(r)}||$ is bounded, where $\gamma_p^{(r)} := \gamma_p^{(r-1)} - \alpha_r/(p-1)^r$.

Proof. Obviously, we only need to consider the case $||\gamma_p^{(r)}|| \neq 0$ for *p* large enough. Let $\mathscr{B} = \{v_1, v_2, \dots, v_m\}$ and I_k , $1 \leq k \leq s$, defined as above. By the definition of α_r , we can write

$$h_p = h_{\infty}^* + \sum_{l=1}^r \frac{\alpha_l}{(p-1)^l} + \gamma_p^{(r)}.$$

The definition of α_r also implies, $p^r ||\gamma_p^{(r)}|| \to 0$ as $p \to \infty$. Then, it is possible to apply Lemma 2.3 with $\tau = r$ and $v = v_i$, $i \in I_k$, $1 \le k \le s_0$. In this case, by (p1) and (p2), $t_{v_i} = k$, $l_{v_i} = 0$ and hence, for $j \in \hat{J}_{t_{v_i}} = \hat{J}_k$, $\alpha_{l_{v_i}}(j) = \alpha_0(j) = h_{\infty}^*(j) = d_k$. Then, from (11), we have

$$\sum_{j \in J_k} v_i(j)c_r(j) + (p-1)^{r+1} \sum_{j \in J_k} v_i(j)\beta_p(j)^{p-2} \frac{\gamma_p^{(r)}(j)}{d_k} (1+R_p(j)) + W_p(i) = 0,$$

 $\langle \rangle$

where now $\beta_p(j) = 1 + \sum_{l=1}^{r} \frac{\alpha_l(j)/d_k}{(p-1)^l}$.

Note that we have replaced \hat{J}_k by J_k because $v_i(j) = 0$ for $j \in J_k \setminus \hat{J}_k$. For simplicity of notation, the equation above can be rewritten as

$$(p-1)^{r+1} \sum_{j \in J_k} v_i(j)\beta_p(j)^{p-2}\gamma_p^{(r)}(j) = \tilde{B}(i) + \tilde{R}_p(i) + \tilde{W}_p(i), \quad (13)$$

where $\tilde{\boldsymbol{B}}(i) = -d_k \sum_{j \in J_k} v_i(j)c_r(j), \ \tilde{\boldsymbol{W}}_p(i) = -d_k \ W_p(i)$ and

$$\tilde{\mathbf{R}}_{p}(i) = -(p-1)^{r+1} \sum_{j \in J_{k}} v_{i}(j)\beta_{p}(j)^{p-2}\gamma_{p}^{(r)}(j)R_{p}(j) = o((p-1)^{r+1}||\gamma_{p}^{(r)}||).$$

Next, we transform Eq. (13), for $i \in I_k$, $1 \leq k \leq s_0$, to a nonsingular linear system of order $m_0 \times m_0$. Indeed, since $\gamma_p^{(r)} \in \mathcal{V}$, there are real numbers $\lambda_p(t)$, $1 \leq t \leq m$, such that

$$\gamma_p^{(r)} = \sum_{t=1}^m \lambda_p(t) v_t.$$

Then from (13), we obtain, for $i \in I_k$, $1 \leq k \leq s_0$,

$$(p-1)^{r+1}\sum_{j\in J_k} v_i(j)\beta_p(j)^{p-2}\sum_{t=1}^m \lambda_p(t)v_t(j) = \tilde{B}(i) + \tilde{R}_p(i) + \tilde{W}_p(i).$$
(14)

Observe that the sum on t in (14) extends only for indices $t \in J_l$ with $1 \leq l \leq k$, because if $j \in J_k$, then $v_t(j) = 0$ for $t \in J_l$ with l > k. The set of equations in (14) is a linear system which can be expressed as

$$(p-1)^{r+1} D \Delta_p M^T \Lambda_p^T = \tilde{\boldsymbol{B}} + \tilde{\boldsymbol{R}}_p + \tilde{\boldsymbol{W}}_p, \qquad (15)$$

where D is the diagonal matrix by blocks given by

$$D=egin{pmatrix} M_{11} & 0 & \cdots & 0 \ 0 & M_{22} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & M_{s_0s_0} \end{pmatrix},$$

 $\Delta_p \coloneqq (\delta_{ij})_{(i,j)\in J_0\times J_0}$ is the diagonal matrix with $\delta_{jj} = \beta_p(j)^{p-2}$ and $\Lambda_p = (\lambda_p(1), \ldots, \lambda_p(m_0))$. If we denote $A(p) \coloneqq D\Delta_p M^T$, then an easy computation shows that

$$A \coloneqq \lim_{p \to \infty} A(p) = \begin{pmatrix} \hat{M}_{11} \hat{M}_{11}^T & 0 & \cdots & 0 \\ \hat{M}_{22} \hat{M}_{12}^T & \hat{M}_{22} \hat{M}_{22}^T & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \hat{M}_{s_0 s_0} \hat{M}_{1s_0}^T & \hat{M}_{s_0 s_0} \hat{M}_{2s_0}^T & \cdots & \hat{M}_{s_0 s_0} \hat{M}_{s_0 s_0}^T \end{pmatrix},$$

where \hat{M}_{ij} is the matrix obtained multiplying each column of M_{ij} by $e^{\alpha_1(j)/(2d_k)}$ if $j \in J_k$. Then

$$\det(A) = \prod_{i=1}^{s_0} \det(\hat{\boldsymbol{M}}_{ii}\hat{\boldsymbol{M}}_{ii}^T) \neq 0$$

and so the matrix A(p) is nonsingular for p large enough. Solving system (15), we get

$$(p-1)^{r+1}\Lambda_p^T = A(p)^{-1}(\tilde{\boldsymbol{B}} + \tilde{\boldsymbol{R}}_p + \tilde{\boldsymbol{W}}_p),$$

and so $(p-1)^{r+1}||\Lambda_p|| \leq ||A(p)^{-1}||(||\tilde{B}|| + ||\tilde{R}_p|| + ||\tilde{W}_p||))$. Hence,

$$(p-1)^{r+1}||\Lambda_p||\left(1-\frac{||A(p)^{-1}||\,||\tilde{\mathbf{R}}_p||}{(p-1)^{r+1}||\Lambda_p||}\right) \leq ||A(p)^{-1}||(||\tilde{\mathbf{B}}||+||\tilde{\mathbf{W}}_p||).$$

Taking limits as $p \to \infty$ we have

$$\lim_{p \to \infty} (p-1)^{r+1} ||\Lambda_p|| \leq ||A^{-1}|| \, ||\tilde{B}||.$$

Similarly,

$$||\tilde{B}|| \leq (p-1)^{r+1} ||A(p)|| ||A_p|| \left(1 + \frac{||\tilde{R}_p||}{(p-1)^{r+1} ||A(p)|| ||A_p||}\right) + ||\tilde{W}_p||$$

and therefore

$$\lim_{p \to \infty} (p-1)^{r+1} ||\Lambda_p|| \ge \frac{||B||}{||A||}.$$

Finally, we conclude that

$$\frac{||\tilde{\boldsymbol{B}}||}{||\boldsymbol{A}||} \leq \lim_{p \to \infty} (p-1)^{r+1} ||\boldsymbol{A}_p|| \leq ||\tilde{\boldsymbol{B}}|| \, ||\boldsymbol{A}^{-1}||.$$

Observe that we have actually proved that $(p-1)^{r+1}|\gamma_p^{(r)}(j)|$ is bounded for $j \in J_0$. Now our proposal will be to prove that $(p-1)^{r+1}|\gamma_p^{(r)}(j)|$ is also bounded, for all $j \in J_s$ (in case that $s \neq s_0$ and $J_s \neq \emptyset$). Suppose the contrary. Using a subsequence if necessary, we consider the vector $u \in \mathbb{R}^n$ whose coordinates are given by

$$u(j) = \lim_{k \to \infty} \frac{\gamma_{p_k}^{(r)}(j)}{||\gamma_{p_k}^{(r)}||}, \qquad 1 \leq j \leq n.$$

Note that $u \in \mathscr{V}$, ||u|| = 1 and u(j) = 0 if $(p-1)^{r+1}|\gamma_p^{(r)}(j)|$ is bounded. In particular u(j) = 0 for all $j \in J_0$ and so $t_u = s$. Applying (2) with v = u and particularizing for $p = p_k$, we get

$$\sum_{j \in \hat{J}_s} u(j) |h_{p_k}(j)|^{p_k - 1} \operatorname{sgn}(h_{p_k}(j)) = 0,$$
(16)

with $h_{p_k}(j) = \sum_{l=1}^r \frac{\alpha_l(j)}{(p_k-1)^l} + \gamma_{p_k}^{(r)}(j).$

Also, observe that $||\alpha_l||_{\hat{J}_s} \neq 0$ for some $l \in \{1, ..., r\}$. Otherwise, from (16), we have, for k large enough,

$$\sum_{j\in \hat{J}_s} |u(j)| |\gamma_{p_k}^{(r)}(j)|^{p_k-1} = 0,$$

and we obtain a contradiction.

284

Since $(p-1)^r ||\gamma_p^{(r)}|| \to 0$ as $p \to \infty$, we can apply Lemma 2.3 with v = u. In this case, (11) yields,

$$\sum_{j \in \tilde{J}_{s}^{0}} u(j)c_{r-l_{u}}(j)\operatorname{sgn}(\alpha_{l_{u}}(j)) + (p-1)^{r+1} \sum_{j \in \tilde{J}_{s}^{0}} u(j)\beta_{p}(j)^{p-2} \frac{\gamma_{p}^{(r)}(j)}{|\alpha_{l_{u}}(j)|} (1+R_{p}(j)) + W_{p} = 0.$$

Particularizing the equation above for $p = p_k$ and taking limits as $k \to \infty$, we get another contradiction.

LEMMA 3.2. Under the same conditions of Theorem 3.1, let $r \in \mathbb{N}$ and suppose that there are $\alpha_l \in \mathcal{V}$, $1 \leq l \leq r-1$, such that

$$h_p = h_\infty^* + \sum_{l=1}^{r-1} \frac{\alpha_l}{(p-1)^l} + \gamma_p^{(r-1)}.$$

If $(p-1)^r ||\gamma_p^{(r-1)}||$ is bounded, then there exists $\lim_{p\to\infty} (p-1)^r \gamma_p^{(r-1)} \in \mathscr{V}$.

Proof. Since $(p-1)^r || \gamma_p^{(r-1)} ||$ is bounded, we can take a subsequence $p_k \to \infty$ such that $(p_k - 1)^r \gamma_{p_k}^{(r-1)}$ converges. We define

$$\alpha_r \coloneqq \lim_{k \to \infty} (p_k - 1)^r \gamma_{p_k}^{(r-1)}$$

and we set

$$h_p = h_{\infty}^* + \sum_{l=1}^r \frac{\alpha_l}{(p-1)^l} + \gamma_p^{(r)}, \tag{17}$$

where $\gamma_p^{(r)} \coloneqq \gamma_p^{(r-1)} - \alpha_r / (p-1)^r$.

First, note that $(p-1)^r ||\gamma_p^{(r)}||$ is also bounded. Now, our claim is that $(p-1)^r \gamma_p^{(r)} \to 0$ as $p \to \infty$. On the contrary, suppose that there exists a subsequence $p'_k \to +\infty$ such that $(p'_k - 1)^r \gamma_{p'_k}^{(r)} \to u \neq 0$. We will show that in this case we get a contradiction. Indeed, since $u \in \mathcal{V}$, applying (2) with v = u, we have,

$$\sum_{j \in J} u(j) |h_p(j)|^{p-1} \operatorname{sgn}(h_p(j)) = 0 \quad \text{for all } p > 1.$$
 (18)

Observe that if $t_u = s$ then $||\alpha_l||_{\hat{j}_s} \neq 0$, for some $l \in \{1, ..., r\}$. Otherwise, particularizing (17) and (18) for $p = p'_k$, we have, for k large enough

$$\sum_{j \in \hat{J}_s} u(j) |h_{p'_k}(j)|^{p'_k - 1} = 0$$

and we get a contradiction.

We consider three exhaustive cases.

(a) If r > 1 and $l_u \le r - 1$, then we apply Lemma 2.3 with $\tau = r - 1$ and v = u. In this case, from (11)

$$\sum_{j \in \hat{J}_{t_u}^0} u(j)c_{r-1-l_v}(j) \operatorname{sgn}(\alpha_{l_u}(j)) + (p-1)^r \sum_{j \in \hat{J}_{t_u}^0} u(j)\beta_p(j)^{p-2} \frac{\gamma_p^{(r)}(j)}{|\alpha_{l_u}(j)|} (1+R_p(j)) + W_p = 0.$$
(19)

Particularizing (19) for $p = p_k$ and taking limits as $k \to \infty$, we have

$$\sum_{j\in J_{t_u}^0} u(j)c_{r-1-l_u}(j)\operatorname{sgn}(\alpha_{l_u}(j)) = 0.$$

Now, taking limits in (19) as $k \to \infty$ with $p = p'_k$, we get

$$\sum_{j\in \hat{oldsymbol{J}}_{t_u}}rac{u(j)^2}{|lpha_{l_u}(j)|} \expiggl(rac{lpha_{l_u+1}(j)}{lpha_{l_u}(j)}iggr)=0,$$

which is a contradiction.

(b) If $l_u = r$, then in particular $t_u = s$ and (18) gives

$$\sum_{j \in \mathcal{J}, \mathcal{J}_{s}^{0}} u(j) \left| \frac{\alpha_{r}(j)}{||\alpha_{r}||_{\mathcal{J}_{s}}} + (p-1)^{r} \frac{\gamma_{p}^{(r)}(j)}{||\alpha_{r}||_{\mathcal{J}_{s}}} \right|^{p-1} \operatorname{sgn}(\alpha_{r}(j) + (p-1)^{r} \gamma_{p}^{(r)}(j)) \\ + \sum_{j \in \mathcal{J}_{s}^{0}} u(j) \left| 1 + (p-1)^{r} \frac{\gamma_{p}^{(r)}(j)}{\alpha_{r}(j)} \right|^{p-1} \operatorname{sgn}(\alpha_{r}(j) + (p-1)^{r} \gamma_{p}^{(r)}(j)) = 0.$$
(20)

From Lemma 3.1, we deduce that $(p_k - 1)^{r+1} ||\gamma_{p_k}^{(r)}||$ is bounded. Hence particularizing (20) for $p = p_k$, using a subsequence if necessary and taking limits as $k \to \infty$, we obtain

$$\sum_{j\in J_s^0} u(j)e^{\omega(j)}\operatorname{sgn}(\alpha_r(j)) = 0,$$

where $\omega(j) = \lim_{k\to\infty} (p_k - 1)^{r+1} \gamma_{p_k}^{(r)}(j)$. In particular we deduce that there exists $j_0 \in \hat{J}_s^0$ such that $u(j_0)\alpha_r(j_0) > 0$. But, if $j \in \hat{J}_s^0$ and $u(j)\alpha_r(j) > 0$, then

$$\lim_{k \to \infty} \left(1 + (p'_k - 1)^r \frac{\gamma_{p'_k}^{(r)}(j)}{\alpha_r(j)} \right) = 1 + \frac{u(j)}{\alpha_r(j)} > 1$$

and $\operatorname{sgn}(\alpha_r(j) + (p'_k - 1)^r \gamma_{p'_k}^{(r)}(j)) = \operatorname{sgn}(u(j))$, for k large enough. On the other hand, if $j \in \hat{J}_s^0$ with $u(j)\alpha_r(j) < 0$ and $|u(j)| > |\alpha_r(j)|$ then for k large enough,

$$\operatorname{sgn}(\alpha_r(j) + (p'_k - 1)^r \gamma_{p'_k}^{(r)}(j)) = \operatorname{sgn}(u(j)).$$

Finally, if $j \in \hat{J}_s^0$ with $u(j)\alpha_r(j) < 0$ and $|u(j)| \le |\alpha_r(j)|$ then

$$\lim_{k \to \infty} \left| 1 + (p'_k - 1)^r \frac{\gamma_{p'_k}^{(r)}(j)}{\alpha_r(j)} \right| = \left| 1 + \frac{u(j)}{\alpha_r(j)} \right| < 1$$

So, taking limits in (20) as $k \to \infty$, with $p = p'_k$, we obtain a contradiction.

(c) If r = 1 and $l_u = 0$, then, in particular $t_u = k$ with $1 \le k \le s_0$. In this case, from (18), we have

$$\sum_{j \in J_k} u(j) \left(1 + \frac{\alpha_1(j)/d_k}{p-1} + \frac{\gamma_p^{(1)}(j)}{d_k} \right)^{p-1} + \sum_{j \in J \setminus J_k} u(j) \left| \frac{h_p(j)}{d_k} \right|^{p-1} \operatorname{sgn}(h_p(j)) = 0.$$

Particularizing this equation for $p = p_k$ and p'_k and taking limits as $k \to \infty$ we get immediately a contradiction. Indeed, for $p = p_k$, we obtain

$$\sum_{j\in J_k} u(j)e^{\alpha_1(j)/d_k} = 0$$

and for $p = p'_k$,

$$\sum_{j\in J_k} u(j)e^{\alpha_1(j)/d_k}e^{u(j)/d_k} = 0.$$

We conclude our assertion, taking into account that $z(e^z - 1) > 0$, for all $z \in \mathbb{R} \setminus \{0\}$.

Remark 3.1. Using the geometric series expansion, one gets for p > 1:

$$\frac{1}{p-1} = \frac{1}{p(1-1/p)} = \frac{1}{p} \sum_{i=0}^{n-1} \frac{1}{p^i} = \sum_{i=1}^{n-1} \frac{1}{p^i}$$

So, after rearranging terms, the expansion in (12) can also be written as one in the standard form

$$h_p = h_{\infty}^* + \sum_{\nu=1} \frac{\beta_{\nu}}{p^{\nu}} + \hat{\gamma}_p^{(r)},$$

where $||\hat{\gamma}_{p}^{(r)}|| = \mathcal{O}(p^{-r-1}).$

Remark 3.2. Let us observe that if $\sum_{j \in J_k} v_i(j) = 0$ for all $i \in I_k$ and all $1 \leq k \leq s_0$, then, from (4), $0 \leq a < 1$. In this case, as a consequence of Theorem 2.1, $p^k ||h_p - h_{\infty}^*|| \to 0$ for all $k \in \mathbb{N}$ and hence (12) holds immediately for $\alpha_l = 0 \in \mathbb{R}^n$, for all $l = 1, \ldots, r$. Therefore, in order to get nontrivial expansions of h_p , we must assume that $\sum_{j \in J_k} v_i(j) \neq 0$ for some $i \in I_k$, $1 \leq k \leq s_0$.

Remark 3.3. In [3], the authors suggest the asymptotic expansion,

$$h_p = h_\infty^* + \sum_{i=1}^\infty \frac{B_i}{p^i}.$$

They apply the series above to obtain good estimations of h_{∞}^* by means of extrapolation techniques. However, to our knowledge, there was not any proof of this formula.

ACKNOWLEDGMENTS

The authors wish to express our thanks to referees for their suggestions and comments.

REFERENCES

- 1. J. Descloux, Approximations in L^p and Chebychev approximations, J. Soc. Ind. Appl. Math. **11** (1963), 1017–1026.
- 2. A. Egger and R. Huotari, Rate of convergence of the discrete Polya algorithm, J. Approx. Theory **60** (1990), 24–30.
- R. Fletcher, J. A. Grant, and M. D. Hebden, Linear minimax approximation as the limit of best L_p-approximation, SIAM J. Numer. Anal. 11 (1974), 123–136.
- M. Marano, Strict approximation on closed convex sets, Approx. Theory Appl. 6 (1990), 99– 109.
- 5. M. Marano and J. Navas, The linear discrete Polya algorithm, *Appl. Math. Lett.* 8 (1995), 25–28.
- J. M. Quesada and J. Navas, Rate of convergence of the linear discrete Polya algorithm, J. Approx. Theory 110 (2001), 109–119.

- 7. J. R. Rice, Thebychefff approximation in a compact metric space, *Bull. Amer. Math. Soc.* 68 (1962), 405–410.
- 8. I. Singer, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, Berlin, 1970.