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In this paper we consider the problem of best approximation in ‘n
p; 15p41: If hp;

15p51; denotes the best ‘p-approximation of the element h 2 Rn from a proper

affine subspace K of Rn; h =2 K ; then limp!1hp ¼ hn
1; where hn

1 is a best uniform

approximation of h from K; the so-called strict uniform approximation. Our aim is to

prove that for all r 2 N there are aj 2 Rn; 14j4r; such that

hp ¼ hn

1 þ a1

p � 1
þ a2

ðp � 1Þ2
þ 	 	 	 þ ar

ðp � 1Þr þ gðrÞp ;

with gðrÞp 2 Rn and jjgðrÞp jj ¼ Oðp�r�1Þ: # 2002 Elsevier Science (USA)

Key Words: strict best approximation; rate of convergence; Polya algorithm;

asymptotic expansion.
1. INTRODUCTION

For x ¼ ðxð1Þ; xð2Þ; . . . ; xðnÞÞ 2 Rn; the ‘p-norms, 14p41; are defined
by

jjxjjp ¼
Xn

j¼1

jxð jÞjp
 !1=p

; 14p51;

jjxjj :¼ jjxjj1 ¼ max
14j4n

jxð jÞj:
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Let Ka| be a subset of Rn: For h 2 Rn=K and 14p41 we say that hp 2 K

is a best ‘p-approximation of h from K if

jjhp � hjjp4jjf � hjjp for all f 2 K :

If K is a closed set of Rn; then the existence of hp is guaranteed. Moreover,
there exists a unique best ‘p-approximation if K is a closed convex set and
15p51: Throughout this paper, K denotes a proper affine subspace of Rn:
Without loss of generality we will assume that h ¼ 0 and 0 =2 K : It is well
known (see for instance [8]) that hp; 15p51; is the best ‘p-approximation
of 0 from K if and only if

Xn

j¼1

ðhpð jÞ � f ð jÞÞjhpð jÞjp�1 sgnðhpð jÞÞ ¼ 0 for all f 2 K : ð1Þ

Writing K ¼ f0 þV for some f0 2 K and V a linear subspace of Rn; then (1)
is just equivalent to

Xn

j¼1

vð jÞjhpð jÞjp�1 sgnðhpð jÞÞ ¼ 0 for all v 2 V: ð2Þ

In the case p ¼ 1 we will say that h1 is a best uniform approximation of 0
from K : In general, the unicity of the best uniform approximation is not
guaranteed. However, an unique ‘‘strict uniform approximation,’’ hn

1; can
be defined [4, 7]. It is known [1, 5, 7] that if K is an affine subspace of Rn; then

lim
p!1

hp ¼ hn

1:

In the literature, the convergence above is called Polya algorithm and occurs
at a rate no worse than 1=p; (see [2, 5]). The aim of this paper is to prove that
the best ‘p-approximation hp has an asymptotic expansion of the form

hp ¼ hn

1 þ a1

p � 1
þ a2

ðp � 1Þ2
þ 	 	 	 þ ar

ðp � 1Þr þ gðrÞp ;

for some aj 2 Rn; 14j4r; gðrÞp 2 Rn and jjgðrÞp jj ¼ Oðp�r�1Þ:
In [5] the authors give a necessary and sufficient condition on K for

pjjhp � hn

1jj ! 0 as p ! 1 ð3Þ

and in [6] it is proved that if (3) holds then there is a number 05a51 such
that p jjhp � hn

1jj=ap is bounded. In particular, this result implies that if (3)
holds, then we have an exponential rate of convergence of hp to hn

1 as
p ! 1 and so the asymptotic expansion of hp follows immediately with



BEST lp APPROXIMATIONS 277
al ¼ 0; 14l4r; for all r 2 N: In the next section, as a consequence of
Theorem 2.1, we will deduce the conditions on K such that this situation
occurs.

2. NOTATION AND PRELIMINARY RESULTS

Without loss of generality, we will assume that jjhn
1jj ¼ 1; hn

1ð jÞ50;
14j4n; and that the coordinates of hn

1 are in decreasing order. Let 1 ¼
d1 > d2 > 	 	 	 > ds50 denote all the different values of hn

1ð jÞ; 14j4n; and
fJlgs

l¼1 the partition of J :¼ f1; 2; . . . ; ng defined by Jl :¼ f j 2 J : hn
1ð jÞ ¼

dlg; 14l4s: We henceforth put s0 ¼ s if ds > 0 and s0 ¼ s � 1 if ds ¼ 0:
We can write K ¼ hn

1 þV; where V is a proper linear subspace of Rn: It
is possible to choose a basis B ¼ fv1; v2; . . . ; vmg of V and a partition
fIkgs

k¼1 of I :¼ f1; 2; . . . ;mg such that for all i 2 Ik; 14k4s;

(p1) við jÞ ¼ 0; 8j 2 Jl ; 14l5k;

(p2) við jÞa0 for some j 2 Jk:

The set of indices Ik could be empty for some k; 14k4s: However, for
simplicity of notation, we suppose that Ika| for 14k4s0; this involves no
loss of generality.

We will use the following result [5, 6].

Theorem 2.1. Under the above conditions, let

a ¼ max
14l;k4r

dl=dk :
X
j2Jl

við jÞa0 for some i 2 Ik

( )
; ð4Þ

where a is assumed to be 0 if
P

j2Jl
við jÞ ¼ 0 for all i 2 Ik; 14k; l4s0: Then

there are L1;L2 > 0 such that

L1ap4p jjhp � hn

1jj4L2ap; 8p > 1: ð5Þ

The following notation will be also used in the next section. We put

I0 ¼
Ss0

k¼1 Ik; m0 ¼ cardðI0Þ; J0 ¼
Ss0

l¼1 Jl and we consider the matrices M

¼ ðvið jÞÞði;jÞ2I0�J0
and Mkl ¼ ðvið jÞÞði;jÞ2Ik�Jl

; 14k; l4s0: Finally, we denote

by AT the transpose of the matrix A and by jjAjj the row-sum norm of A:

Lemma 2.1. If fxpg is a sequence of real numbers such that p jxpj ! 0 as

p ! 1; then

ð1 þ xpÞp ¼ 1 þ p xp þ Rp;

with Rp ¼ oðp jxpjÞ:
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Proof. The proof follows immediately from the application of Taylor’s
formula to the function jðzÞ ¼ ð1 þ zÞp at z ¼ 0: ]

In the next formula we use the following standard notation. Let
N0 :¼ N [ f0g and k 2 N: If r ¼ ðr1; r2; . . . ; rkÞ 2 Nk

0 and a ¼ fajgj2N is a
sequence of real numbers, then we define jrj :¼ r1 þ r2 þ 	 	 	 þ rk; r! :¼
r1!r2! 	 	 	 rk! and ar ¼ ar1

1 ar2

2 	 	 	 ark

k : Also, for i 2 N; we denote Gðk; iÞ :¼ fr 2
Nk

0 :
Pk

j¼1 jrj ¼ ig:
Let a ¼ fajgj2N and b ¼ fbjgj2N be two sequences of real numbers and

m; n 2 N: An easy computation gives

fm;nðzÞ :¼
Xn

j¼1

bj

Xm

i¼1

aiz
i

 !j

¼
Xmn

i¼1

X
r2Gðm;iÞ

jrj!
r!

bjrj a
r zi:

Applying the above formula and the Rolle Theorem we easily obtain the
expansion of known functions. For example, taking bj ¼ 1=j!; j ¼ 1; 2; . . . ;
we get

exp ½a1z þ 	 	 	 þ akzk� ¼ 1 þ
Xk

i¼1

X
r2Gðk;iÞ

ar

r!
zi þ Oðzkþ1Þ:

Analogously, taking bj ¼ ð�1Þj�1=j; j ¼ 1; 2; . . . ; we have

1

z
logð1 þ a1z þ 	 	 	 þ akzkÞ ¼

Xkþ1

i¼1

X
r2Gðk;iÞ

ð�1Þjrj�1ðjrj � 1Þ!
r!

arzi�1 þ Oðzkþ1Þ:

Now we could use the formulas above to obtain explicitly the asymptotic
expansion of order k of the expression

1 þ a1

p
þ 	 	 	 þ ak

pk

� 	p

¼ exp p log 1 þ a1

p
þ 	 	 	 þ ak

pk

� 	
 �
:

However, in order to simplify the notation, we resume these observations in
the following result.

Lemma 2.2. Let k 2 N and al 2 R; 14l4k: Then there are cl 2 R; 14l

4k; with cl ¼ clða1; . . . ; alÞ; such that

1 þ a1

p
þ 	 	 	 þ ak

pr

� 	p

¼ c0 þ
c1

p
þ 	 	 	 þ ck

pk
þ O

1

pkþ1

� 	
;

where c0 ¼ ea1 :
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For v 2 V; va0; and 14t4s; let Jt½v� be the set of indices j in Jt such that
vð jÞa0 and define

tv :¼ minft 2 f1; . . . ; sg : Jt½v�a|g and #JJtv
:¼ Jtv

½v�:

Also, if J 0 � J we denote by jj 	 jjJ 0 the restriction of the norm jj 	 jj to the set
of indices in J 0:

Lemma 2.3. Suppose that there are al 2 V; 14l4r; such that

hp ¼ hn

1 þ
Xr

l¼1

al

ðp � 1Þl
þ gðrÞp ;

where ðp � 1ÞtgðrÞp ! 0 as p ! 1 for some t 2 N: Let v 2 V; va0; and

suppose that jjal jj #JJtv
a0 for some l 2 f0; 1; . . . ; rg; where a0 :¼ hn

1: Define

lv :¼ minfl 2 f0; 1; . . . ; rg : alð jÞa0 for some j 2 #JJtv
g

and let #JJ
0

tv
be the set of indices in #JJtv

such that jalvð jÞj ¼ jjalv jj #JJtv
: ThenX

j2 #JJ
0

tv

vð jÞclð jÞ sgnðalvð jÞÞ ¼ 0; 04l4t� lv � 1; ð6Þ

where, for each j 2 #JJtv
; the coefficients clð jÞ are given by Lemma 2.2 with

al ¼ alþlvð jÞ=alvð jÞ; 14l4r � lv and k ¼ r � lv:

Proof. Note that we can assume that lv5t; otherwise the condition in (6)
is empty. Applying (2), we haveX

j2J

vð jÞjhpð jÞjp�1 sgnðhpð jÞÞ ¼ 0;

and so, multiplying by ððp � 1Þlv=jjalv jj #JJtv
Þp�1;

X
j2J

vð jÞ ðp � 1Þlv hpð jÞ
jjalv jj #JJtv

�����
�����
p�1

sgnðhpð jÞÞ ¼ 0: ð7Þ

If j 2 #JJ
0

tv
; then, since ðp � 1ÞlvgðrÞp ð jÞ ! 0 as p ! 1; we have, for p large

enough, sgnðhpð jÞÞ ¼ sgnðalvð jÞÞ and

ðp � 1Þlv jhpð jÞj
jjalv jj #JJtv

¼ 1 þ
Xr

l¼lvþ1

alð jÞ=alvð jÞ
ðp � 1Þl�lv

þ ðp � 1Þlv g
ðrÞ
p ð jÞ
alvð jÞ :
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Also, since ðp � 1Þlvþ1gðrÞp ð jÞ ! 0 as p ! 1; we can apply Lemma 2.1 to
obtain

1 þ
Xr

l¼lvþ1

alð jÞ=alvð jÞ
ðp � 1Þl�lv

þ ðp � 1Þlv g
ðrÞ
p ð jÞ
alvð jÞ

 !p�1

¼ bpð jÞp�1 1 þ ðp � 1Þlv gðrÞp ð jÞ
bpð jÞalvð jÞ

 !p�1

¼ bpð jÞp�1 þ ðp � 1Þlvþ1bpð jÞp�2 g
ðrÞ
p ð jÞ
alvð jÞ ð1 þ Rpð jÞÞ; ð8Þ

where Rpð jÞ ¼ oð1Þ and bpð jÞ ¼ 1 þ
Pr

l¼lvþ1
alð jÞ=alv ð jÞ
ðp�1Þl�lv

:
Now, from Lemma 2.2, we have

bpð jÞp�1 ¼ 1 þ
Xr

l¼lvþ1

alð jÞ=alvð jÞ
ðp � 1Þl�lv

 !p�1

¼
Xr�lv

l¼0

clð jÞ
ðp � 1Þl

þ Epð jÞ; ð9Þ

with Epð jÞ ¼ Oððp � 1Þlv�r�1Þ and the coefficients clð jÞ; 04l4r � lv; depend
on alð jÞ; lv4l4r:

On the other hand, if j 2 J = #JJ
0

tv
and vð jÞa0; then

lim
p!1

ðp � 1Þlv jhpð jÞj
jjalv jj #JJtv

¼ lim
p!1

Xr

l¼lv

alð jÞ=jjalv jj #JJtv

ðp � 1Þl�lv
þ ðp � 1Þlv gðrÞp ð jÞ

jjalv jj #JJtv

�����
����� ¼ jalvð jÞj

jjalv jj #JJtv

51:

From (8) and (9), Eq. (7) can be written as

X
j2J=#JJ

0

tv

vð jÞ ðp � 1Þlv hpð jÞ
jjalv jj #JJtv

�����
�����
p�1

sgnðhpð jÞÞ

þ
X
j2 #JJ

0

tv

Xr�lv

l¼0

vð jÞclð jÞ
ðp � 1Þl

sgnðalvð jÞÞ þ
X
j2 #JJ

0

tv

uð jÞEpð jÞ sgnðalvð jÞÞ

þ ðp � 1Þlvþ1
X
j2 #JJ

0

tv

vð jÞbpð jÞp�2 gðrÞp ð jÞ
jalvð jÞjð1 þ Rpð jÞÞ ¼ 0: ð10Þ

Finally, multiplying (10) by ðp � 1Þl ; 04l4t� lv � 1; and taking limits as
p ! 1 we conclude (6). ]
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If lv4t; taking into account (6) and multiplying (10) by ðp � 1Þt�lv ; we can
write for short,X

j2 #JJ
0

tv

vð jÞct�lvð jÞ sgnðalvð jÞÞ

þ ðp � 1Þtþ1
X
j2 #JJ

0

tv

vð jÞbpð jÞp�2 gðrÞp ð jÞ
jalvð jÞjð1 þ Rpð jÞÞ þ Wp ¼ 0; ð11Þ

where Wp ¼ oð1Þ:

3. ASYMPTOTIC BEHAVIOUR OF BEST ‘p-APPROXIMATIONS

Theorem 3.1. Let K be a proper affine subspace of Rn; 0 =2 K: For 15p

51; let hp denote the best ‘p-approximation of 0 from K and let hn
1 be the

strict uniform approximation. Then, for all r 2 N; there are al 2 Rn; 14l4r;
such that

hp ¼ hn

1 þ a1

p � 1
þ 	 	 	 þ ar

ðp � 1Þr þ gðrÞp ; ð12Þ

where gðrÞp 2 Rn and jjgðrÞp jj ¼ Oðp�r�1Þ:

Proof. Since p jjhp � hn
1jj is bounded [2, 5], the proof follows immedi-

ately by induction on r with the help of Lemmas 3.1 and 3.2. ]

Lemma 3.1. Under the same conditions of Theorem 3.1, let r 2 N and

suppose that there are al 2 V; 14l4r � 1; such that

hp ¼ hn

1 þ
Xr�1

l¼1

al

ðp � 1Þl
þ gðr�1Þ

p :

If there exists ar :¼ limp!1 ðp � 1Þrgðr�1Þ
p ; then ðp � 1Þrþ1jjgðrÞp jj is bounded,

where gðrÞp :¼ gðr�1Þ
p � ar=ðp � 1Þr:

Proof. Obviously, we only need to consider the case jjgðrÞp jja0 for p large
enough. Let B ¼ fv1; v2; . . . ; vmg and Ik; 14k4s; defined as above. By the
definition of ar; we can write

hp ¼ hn

1 þ
Xr

l¼1

al

ðp � 1Þl
þ gðrÞp :
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The definition of ar also implies, pr jjgðrÞp jj ! 0 as p ! 1: Then, it is possible
to apply Lemma 2.3 with t ¼ r and v ¼ vi; i 2 Ik; 14k4s0: In this case, by
(p1) and (p2), tvi

¼ k; lvi ¼ 0 and hence, for j 2 #JJtvi
¼ #JJk; alvi

ð jÞ ¼ a0ð jÞ ¼
hn
1ð jÞ ¼ dk: Then, from (11), we have

X
j2Jk

við jÞcrð jÞ þ ðp � 1Þrþ1
X
j2Jk

við jÞbpð jÞp�2 g
ðrÞ
p ð jÞ
dk

ð1 þ Rpð jÞÞ þ WpðiÞ ¼ 0;

where now bpð jÞ ¼ 1 þ
Pr

l¼1
al ð jÞ=dk

ðp�1Þl :

Note that we have replaced #JJk by Jk because við jÞ ¼ 0 for j 2 Jk = #JJk: For
simplicity of notation, the equation above can be rewritten as

ðp � 1Þrþ1
X
j2Jk

við jÞbpð jÞp�2gðrÞp ð jÞ ¼ *BBðiÞ þ *RRpðiÞ þ *WW pðiÞ; ð13Þ

where *BBðiÞ ¼ �dk

P
j2Jk

við jÞcrð jÞ; *WW pðiÞ ¼ �dk WpðiÞ and

*RRpðiÞ ¼ �ðp � 1Þrþ1
X
j2Jk

við jÞbpð jÞp�2gðrÞp ð jÞRpð jÞ ¼ oððp � 1Þrþ1jjgðrÞp jjÞ:

Next, we transform Eq. (13), for i 2 Ik; 14k4s0; to a nonsingular linear
system of order m0 � m0: Indeed, since gðrÞp 2 V; there are real numbers
lpðtÞ; 14t4m; such that

gðrÞp ¼
Xm

t¼1

lpðtÞvt:

Then from (13), we obtain, for i 2 Ik; 14k4s0;

ðp � 1Þrþ1
X
j2Jk

við jÞbpð jÞp�2
Xm

t¼1

lpðtÞvtð jÞ ¼ *BBðiÞ þ *RRpðiÞ þ *WW pðiÞ: ð14Þ

Observe that the sum on t in (14) extends only for indices t 2 Jl

with 14l4k; because if j 2 Jk; then vtð jÞ ¼ 0 for t 2 Jl with l > k:
The set of equations in (14) is a linear system which can be expressed
as

ðp � 1Þrþ1
DDpMTLT

p ¼ *BB þ *RRp þ *WW p; ð15Þ
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where D is the diagonal matrix by blocks given by

D ¼

M11 0 	 	 	 0

0 M22 	 	 	 0

..

. ..
. . .

. ..
.

0 0 	 	 	 Ms0s0

0
BBBBB@

1
CCCCCA;

Dp :¼ ðdijÞði;jÞ2J0�J0
is the diagonal matrix with djj ¼ bpð jÞp�2 and Lp ¼

ðlpð1Þ; . . . ; lpðm0ÞÞ: If we denote AðpÞ :¼ DDpMT ; then an easy computation
shows that

A :¼ lim
p!1

AðpÞ ¼

#MM11
#MM

T

11 0 	 	 	 0

#MM22
#MM

T

12
#MM22

#MM
T

22 	 	 	 0

..

. ..
. . .

. ..
.

#MMs0s0
#MM

T

1s0

#MMs0s0
#MM

T

2s0
	 	 	 #MMs0s0

#MM
T

s0s0

0
BBBBBB@

1
CCCCCCA
;

where #MMij is the matrix obtained multiplying each column of Mij by
ea1ð jÞ=ð2dkÞ if j 2 Jk: Then

detðAÞ ¼
Ys0

i¼1

detð #MMii
#MM

T

ii Þa0

and so the matrix AðpÞ is nonsingular for p large enough. Solving system
(15), we get

ðp � 1Þrþ1LT
p ¼ AðpÞ�1ð *BB þ *RRp þ *WW pÞ;

and so ðp � 1Þrþ1jjLpjj4jjAðpÞ�1jjðjj *BBjj þ jj *RRpjj þ jj *WW pjjÞÞ: Hence,

ðp � 1Þrþ1jjLpjj 1 � jjAðpÞ�1jj jj *RRpjj
ðp � 1Þrþ1jjLpjj

 !
4jjAðpÞ�1jjðjj *BBjj þ jj *WW pjjÞ:

Taking limits as p ! 1 we have

lim
p!1

ðp � 1Þrþ1jjLpjj4jjA�1jj jj *BBjj:
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Similarly,

jj *BBjj4ðp � 1Þrþ1jjAðpÞjj jjLpjj 1 þ jj *RRpjj
ðp � 1Þrþ1jjAðpÞjj jjLpjj

 !
þ jj *WW pjj

and therefore

lim
p!1

ðp � 1Þrþ1jjLpjj5
jj *BBjj
jjAjj:

Finally, we conclude that

jj *BBjj
jjAjj4 lim

p!1
ðp � 1Þrþ1jjLpjj4jj *BBjj jjA�1jj:

Observe that we have actually proved that ðp � 1Þrþ1jgðrÞp ð jÞj is bounded for

j 2 J0: Now our proposal will be to prove that ðp � 1Þrþ1jgðrÞp ð jÞj is also

bounded, for all j 2 Js (in case that sas0 and Jsa|). Suppose the contrary.
Using a subsequence if necessary, we consider the vector u 2 Rn whose
coordinates are given by

uð jÞ ¼ lim
k!1

gðrÞpk
ð jÞ

jjgðrÞpk
jj
; 14j4n:

Note that u 2 V; jjujj ¼ 1 and uð jÞ ¼ 0 if ðp � 1Þrþ1jgðrÞp ð jÞj is bounded. In
particular uð jÞ ¼ 0 for all j 2 J0 and so tu ¼ s: Applying (2) with v ¼ u and
particularizing for p ¼ pk; we get

X
j2 #JJs

uð jÞjhpk
ð jÞjpk�1 sgnðhpk

ð jÞÞ ¼ 0; ð16Þ

with hpk
ð jÞ ¼

Pr
l¼1

alð jÞ
ðpk�1Þl þ gðrÞpk

ð jÞ:

Also, observe that jjal jj #JJs
a0 for some l 2 f1; . . . ; rg: Otherwise, from (16),

we have, for k large enough,X
j2 #JJs

juð jÞjjgðrÞpk
ð jÞjpk�1 ¼ 0;

and we obtain a contradiction.
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Since ðp � 1ÞrjjgðrÞp jj ! 0 as p ! 1; we can apply Lemma 2.3 with v ¼ u:
In this case, (11) yields,X

j2 #JJ
0

s

uð jÞcr�luð jÞ sgnðaluð jÞÞ

þ ðp � 1Þrþ1
X
j2 #JJ

0

s

uð jÞbpð jÞp�2 gðrÞp ð jÞ
jaluð jÞjð1 þ Rpð jÞÞ þ Wp ¼ 0:

Particularizing the equation above for p ¼ pk and taking limits as k ! 1;
we get another contradiction. ]

Lemma 3.2. Under the same conditions of Theorem 3.1, let r 2 N and

suppose that there are al 2 V; 14l4r � 1; such that

hp ¼ hn

1 þ
Xr�1

l¼1

al

ðp � 1Þl
þ gðr�1Þ

p :

If ðp � 1Þrjjgðr�1Þ
p jj is bounded, then there exists limp!1 ðp � 1Þrgðr�1Þ

p 2 V:

Proof. Since ðp � 1Þrjjgðr�1Þ
p jj is bounded, we can take a subsequence

pk ! 1 such that ðpk � 1Þrgðr�1Þ
pk

converges. We define

ar :¼ lim
k!1

ðpk � 1Þrgðr�1Þ
pk

;

and we set

hp ¼ hn

1 þ
Xr

l¼1

al

ðp � 1Þl
þ gðrÞp ; ð17Þ

where gðrÞp :¼ gðr�1Þ
p � ar=ðp � 1Þr:

First, note that ðp � 1ÞrjjgðrÞp jj is also bounded. Now, our claim is that
ðp � 1ÞrgðrÞp ! 0 as p ! 1: On the contrary, suppose that there exists a
subsequence p0

k ! þ1 such that ðp0
k � 1ÞrgðrÞp0

k

! ua0: We will show that in
this case we get a contradiction. Indeed, since u 2 V; applying (2) with
v ¼ u; we have,X

j2J

uð jÞjhpð jÞjp�1 sgnðhpð jÞÞ ¼ 0 for all p > 1: ð18Þ

Observe that if tu ¼ s then jjal jj #JJs
a0; for some l 2 f1; . . . ; rg: Otherwise,

particularizing (17) and (18) for p ¼ p0
k; we have, for k large enoughX

j2 #JJs

uð jÞjhp0
k
ð jÞjp

0
k
�1 ¼ 0

and we get a contradiction.
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We consider three exhaustive cases.
(a) If r > 1 and lu4r � 1; then we apply Lemma 2.3 with t ¼ r � 1 and

v ¼ u: In this case, from (11)X
j2 #JJ

0

tu

uð jÞcr�1�lvð jÞ sgnðaluð jÞÞ

þ ðp � 1Þr
X
j2 #JJ

0

tu

uð jÞbpð jÞp�2 gðrÞp ð jÞ
jaluð jÞjð1 þ Rpð jÞÞ þ Wp ¼ 0: ð19Þ

Particularizing (19) for p ¼ pk and taking limits as k ! 1; we haveX
j2 #JJ

0

tu

uð jÞcr�1�luð jÞ sgnðaluð jÞÞ ¼ 0:

Now, taking limits in (19) as k ! 1 with p ¼ p0k; we get

X
j2 #JJ

0

tu

uð jÞ2

jaluð jÞj exp
aluþ1ð jÞ
aluð jÞ

� 	
¼ 0;

which is a contradiction.
(b) If lu ¼ r; then in particular tu ¼ s and (18) gives

X
j2J=#JJ

0

s

uð jÞ arð jÞ
jjarjj #JJs

þ ðp � 1Þr g
ðrÞ
p ð jÞ
jjarjj #JJs

�����
�����
p�1

sgnðarð jÞ þ ðp � 1ÞrgðrÞp ð jÞÞ

þ
X
j2 #JJ

0

s

uð jÞ 1 þ ðp � 1Þrg
ðrÞ
p ð jÞ
arð jÞ

�����
�����
p�1

sgnðarð jÞ þ ðp � 1ÞrgðrÞp ð jÞÞ ¼ 0: ð20Þ

From Lemma 3.1, we deduce that ðpk � 1Þrþ1jjgðrÞpk
jj is bounded. Hence

particularizing (20) for p ¼ pk; using a subsequence if necessary and taking
limits as k ! 1; we obtainX

j2 #JJ
0

s

uð jÞeoð jÞ sgnðarð jÞÞ ¼ 0;

where oð jÞ ¼ limk!1 ðpk � 1Þrþ1gðrÞpk
ð jÞ: In particular we deduce that there

exists j0 2 #JJ
0

s such that uð j0Þarð j0Þ > 0: But, if j 2 #JJ
0

s and uð jÞarð jÞ > 0; then

lim
k!1

1 þ ðp0
k � 1Þr

gðrÞp0
k

ð jÞ
arð jÞ

0
@

1
A ¼ 1 þ uð jÞ

arð jÞ > 1
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and sgnðarð jÞ þ ðp0
k � 1ÞrgðrÞp0

k

ð jÞÞ ¼ sgnðuð jÞÞ; for k large enough. On the

other hand, if j 2 #JJ
0

s with uð jÞarð jÞ50 and juð jÞj > jarð jÞj then for k large
enough,

sgnðarð jÞ þ ðp0
k � 1ÞrgðrÞp0

k

ð jÞÞ ¼ sgnðuð jÞÞ:

Finally, if j 2 #JJ
0

s with uð jÞarð jÞ50 and juð jÞj4jarð jÞj then

lim
k!1

1 þ ðp0
k � 1Þr

gðrÞ
p0

k

ð jÞ
arð jÞ

������
������ ¼ 1 þ uð jÞ

arð jÞ

����
����51:

So, taking limits in (20) as k ! 1; with p ¼ p0
k; we obtain a

contradiction.
(c) If r ¼ 1 and lu ¼ 0; then, in particular tu ¼ k with 14k4s0: In this

case, from (18), we have

X
j2Jk

uð jÞ 1 þ a1ð jÞ=dk

p � 1
þ gð1Þp ð jÞ

dk

 !p�1

þ
X

j2J=Jk

uð jÞ hpð jÞ
dk

����
����
p�1

sgnðhpð jÞÞ ¼ 0:

Particularizing this equation for p ¼ pk and p0
k and taking limits

as k ! 1 we get immediately a contradiction. Indeed, for p ¼ pk; we
obtain X

j2Jk

uð jÞea1ð jÞ=dk ¼ 0

and for p ¼ p0
k; X

j2Jk

uð jÞea1ð jÞ=dk euð jÞ=dk ¼ 0:

We conclude our assertion, taking into account that zðez � 1Þ > 0; for all
z 2 R=f0g:

Remark 3.1. Using the geometric series expansion, one gets for p > 1:

1

p � 1
¼ 1

pð1 � 1=p Þ ¼
1

p

X
i¼0

1

pi
¼
X
i¼1

1

pi
:
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So, after rearranging terms, the expansion in (12) can also be written as one
in the standard form

hp ¼ hn

1 þ
X
n¼1

bn
pn þ #ggðrÞp ;

where jj#ggðrÞp jj ¼ Oðp�r�1Þ:

Remark 3.2. Let us observe that if
P

j2Jk
við jÞ ¼ 0 for all i 2 Ik and all

14k4s0; then, from (4), 04a51: In this case, as a consequence of Theorem
2.1, pk jjhp � hn

1jj ! 0 for all k 2 N and hence (12) holds immediately for
al ¼ 0 2 Rn; for all l ¼ 1; . . . ; r: Therefore, in order to get nontrivial
expansions of hp; we must assume that

P
j2Jk

við jÞa0 for some i 2 Ik;
14k4s0:

Remark 3.3. In [3], the authors suggest the asymptotic expansion,

hp ¼ hn

1 þ
X1
i¼1

Bi

pi
:

They apply the series above to obtain good estimations of hn
1 by means of

extrapolation techniques. However, to our knowledge, there was not any
proof of this formula.
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