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In this paper we consider the problem of best approximation in £, | <p<oo.If /3,
1 <p<oo, denotes the best £,-approximation of the element # € R" from a proper
affine subspace K of R", i ¢ K, then lim,_..h, = h% , where % is a best uniform
approximation of /1 from K, the so-called strict uniform approximation. Our aim is to
prove that for all € N there are «; € R", 1 <j<r, such that

o [0%) o7

+ oot

p—1 (p—1)> -1
with “/;,r) € R" and y[(,r)H = (f(pir*l)‘ © 2002 Elsevier Science (USA)

Key Words: strict best approximation; rate of convergence; Polya algorithm;
asymptotic expansion.

hy = % + 70,

1. INTRODUCTION

For x = (x(1),x(2),...,x(n)) € R", the ¢,-norms, 1 <p< oo, are defined
by

n 1/p
Ixll, = { D (O] . 1<p<os,
J=1

x|| = ||X||,, = max |x(j)|.
Il = il = max [x())
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Let K #0 be a subset of R". For h € R"\ K and 1<p<oo we say that i, € K
is a best £,-approximation of / from K if

[y = hll, <|[f = hl|, for all f € K.

If K is a closed set of R", then the existence of /1, is guaranteed. Moreover,
there exists a unique best £,-approximation if K is a closed convex set and
1 <p < oo. Throughout this paper, K denotes a proper affine subspace of R".
Without loss of generality we will assume that 7 =0 and 0 ¢ K. It is well
known (see for instance [8]) that /,, 1 <p <oo, is the best £,-approximation
of 0 from K if and only if

n

> () =S UDI(HP senlhy(j) =0 forall fe K. (1)

J=1

Writing K = f; + ¥ for some fy € K and #” a linear subspace of R", then (1)
is just equivalent to

n

> o)lp(/)P " sen(hy(/) =0 forall ve 7" 2)

In the case p = oo we will say that /A, is a best uniform approximation of 0
from K. In general, the unicity of the best uniform approximation is not
guaranteed. However, an unique “strict uniform approximation,” A* , can
be defined [4, 7]. It is known [1, 5, 7] that if K is an affine subspace of R", then

pll_g h, = h%,.

In the literature, the convergence above is called Polya algorithm and occurs
at a rate no worse than 1/p, (see [2, 5]). The aim of this paper is to prove that
the best /,-approximation /i, has an asymptotic expansion of the form

OC] OC2 O(r (r)

t—t =+,

p=1 (p-17 -1 "
for some o; € R", 1 <j<r, y,(,r) € R" and ||y,<,r)|| =0@p" .

In [5] the authors give a necessary and sufficient condition on K for

hy = 1%, +

plihy = 5]l =0 as p— oo (3)

and in [6] it is proved that if (3) holds then there is a number 0 <a <1 such
that p ||h, — h*_||/a” is bounded. In particular, this result implies that if (3)
holds, then we have an exponential rate of convergence of /, to h¥ as
p — oo and so the asymptotic expansion of /i, follows immediately with
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oy =0, 1</<r, for all r € N. In the next section, as a consequence of
Theorem 2.1, we will deduce the conditions on K such that this situation
occurs.

2. NOTATION AND PRELIMINARY RESULTS

Without loss of generality, we will assume that [|A% || =1, h* (j)>0,
1<j<n, and that the coordinates of A* are in decreasing order. Let 1 =
dy > dy > --- > d; >0 denote all the different values of /% (), 1 <j<n, and
{J1})_, the partition of J :={1,2,...,n} defined by J, ={j € J:h* (j) =
di}, 1<I<s. We henceforth put 5o = sif d; > 0 and s =s— 1 if d;, = 0.

We can write K = i + 7~, where 7" is a proper linear subspace of R". It
is possible to choose a basis 4 = {vj,v2,...,0,} of ¥ and a partition
{I:};_, of I ={1,2,...,m} such that for all i € I, | <k<s,

(D) vi(j)=0,VjeJ;, 1<i<k,
(p2) vi(j)#0 for some j € Jy.

The set of indices I; could be empty for some k, 1 <k<s. However, for
simplicity of notation, we suppose that I, #0 for 1 <k <sy, this involves no
loss of generality.

We will use the following result [5, 6].

THEOREM 2.1. Under the above conditions, let

a = max {d[/dk : Z l),‘(j)?fo for some i € Ik}7 (4)

I1<lk<r e

where a is assumed to be 0 if >, vi(j) = 0 for all i € Iy, 1<k,I<s. Then
there are Ly, L, > 0 such that

Lid"<pl|lh, — W% || < Ld, Vp > 1. (5)

The following notation will be also used in the next section. We put
Iy = I, my = card(ly), Jo = U2, J; and we consider the matrices M
= (i) i e xs a0d Mg = (0:(J))ijer x> 1 <k,I<s0. Finally, we denote
by A7 the transpose of the matrix 4 and by ||4]| the row-sum norm of A.

Lemma 2.1, If {x,} is a sequence of real numbers such that p |x,| — 0 as
p — 00, then

(1+x,) =14+px,+R,,

with R, = o(p |x,]).
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Proof. The proof follows immediately from the application of Taylor’s
formula to the function ¢(z) = (1+z)” atz=0. &

In the next formula we use the following standard notation. Let
No =NU{0} and k e N. If r = (r1,72,...,7%) € N& and a = {aj}jen 18 @
sequence of real numbers, then we define |r|=r +r+ - +rg, tl=
rilr! - rland a" = a'dy - - - djf. Also, for i € N, we denote (5( i)={re

Kok oo
No = 21 Jrj =i}

Let a = {g;},.y and b = {b;}, be two sequences of real numbers and
m,n € N. An easy computation gives

Jinn(z Zb(Zaz) Z Z b|,,az

i=1 re9(m,)

Applying the above formula and the Rolle Theorem we easily obtain the
expansion of known functions. For example, taking b, = 1/j!, j =1,2,...
we get

)

exp a1z + - - + ax2F _1+Z Z z+@ ),

i=1 re9(k,i)

Analogously, taking b; = (—1)/71/j,j =1,2,..., we have

1 o e = 1)
—log(1 +ajz + --- + ax2") Z (=1 E|r| ) az 4 o).
z i=1 re%(k.i) r

Now we could use the formulas above to obtain explicitly the asymptotic
expansion of order k of the expression

a a\? a a
(1+1+---+’,§) :exp[p10g<l+l+---+:>}
V4 V4 p V4

However, in order to simplify the notation, we resume these observations in
the following result.

LemMMmA 2.2. Let k € N and aj € R, 1 <I<k. Then there are ¢; € R, 1<
<k, with ¢; = ¢/(ay, ... ,a;), such that

a ai\? c 1
(1+p'+-~+p’,f) :c0+;1+ +p +0<pk+1>

where ¢y = e
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Forv e 77, v#0, and 1<¢<s, let J;[v] be the set of indices j in J; such that
v(j)#0 and define

t, =min{r e {1,...,s} : J,[u] #0} and J, =J,[v].

Also, if J' C J we denote by || - ||+ the restriction of the norm || - || to the set
of indices in J'.

LEMMA 2.3.  Suppose that there are oy € V", 1 <I<r, such that

h, = h,

Vp?

where (p — I)Tyé” — 0 as p— oo for some Tt €N. Let ve ¥, v#0, and
suppose that ||oy|[; #0 for some | € {0,1,...,r}, where oy = I, . Define

I, =min{/ € {0,1,...,r}:oy(j)#0 for some j € J, }
ANIE

> vDal)sen(e,(j) =0, 0<i<t—1, -1, (6)

.50
JEJ

50 Lo s
and let J, be the set of indices in J,,

j,- Then

where, for each j € j,v, the coefficients c/(j) are given by Lemma 2.2 with
ar= oy () o, (), 1<I<r—1,and k =r —1I,.

Proof. Note that we can assume that /, <t; otherwise the condition in (6)
is empty. Applying (2), we have

> v ()P sen(hy () =0,

jel

and so, multiplying by ((p — 1)[“/||oc/,,_||j’v)p71,

> u())

jel

p—1

(r—1" sgn(fy (/) = 0. (7)

hy(J)

Ifje j?w then, since (p — 1)1“y§,")(j) — 0 as p — oo, we have, for p large
enough, sgn(h,(/)) = sgn(,(/)) and

W (D () () ()
Aty _1+1:1L,+1 (p—1"" tle-1) o, (J)

(p—1)




280 QUESADA, MARTINEZ, AND NAVAS

Also, since (p — 1

)H]y},')( ) — 0 as p — oo, we can apply Lemma 2.1 to
obtain

~w(Noa) L D)
<1+1§1 PR J>>

p—1
=B,(Y" <1+(P—1 ])

B GP (1), G2 ((j) RG).  (®)

where R, (j) = o(1) and B,(j) = 1+370, ., al((p /10)(? T
Now, from Lemma 2.2, we have

()N _§E ) g0
) I RO

r

-1
B,(j) " = (1 +/§;1 p—1)"

with E,(j) = O((p —
on oy(j), L, <I<r.

On the other hand, if j € J\J and v(j)#0, then

1)"~=") and the coefficients ¢;( /), 0</<r — I,, depend

fim (p— 1 10

p—00 . jl,;

r ay(j)/ ey, |1, L ()
IR

llew 15,

= lim

p—0

_ )l
|

<1.

=1,

From (8) and (9), Eq. (7) can be written as

p—1

) — 1y L2 ()

o 11,

————sgn(oy,

2 1) +Z J) sen(a,(j))

Y jEJ

(r)
Fo- Y G U Ry () =0

e 0.0

(10)

Finally, multiplying (10) by (p — 1)’

, 0<I<t—1,— 1, and taking limits as
p — oo we conclude (6). 1
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If [, <, taking into account (6) and multiplying (10) by (p — 1)1_["7 we can
write for short,

> v(j)e i, () sen(e, (/)

50
J€J

QN
=0 RGP R R+ =0, (1)

.50
JGJzL-

where W, = o(1).

3. ASYMPTOTIC BEHAVIOUR OF BEST /,-APPROXIMATIONS

THEOREM 3.1.  Let K be a proper affine subspace of R", 0 ¢ K. For 1 <p
<00, let h, denote the best {,-approximation of 0 from K and let h*_ be the
strict uniform approximation. Then, for all r € N, there are oy € R", 1<I<r,
such that

N TR SN (| 12
hP hoc+p71+ +(p71)r+ypv ( )

where 35 € R" and ||| = 0(p~"").

Proof. Since p ||h, — K% || is bounded [2, 5], the proof follows immedi-
ately by induction on r with the help of Lemmas 3.1 and 3.2. 1§

LeEmMMA 3.1.  Under the same conditions of Theorem 3.1, let r € N and
suppose that there are oy € V", 1 <I<r — 1, such that

hy = %, +Z

If there exists % ; = lim, o (p — 1) pr . then (p— 1)
where yé) = y,(, —o/(p—1)".

—H),, b,

3w is bounded,

Proof. Obviously, we only need to consider the case ||y,<7r> || #0 for p large
enough. Let = {v},v2,...,0,} and I, 1 <k<s, defined as above. By the
definition of «,, we can write

hy = h*, —l—z ,+yp.
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The definition of «, also implies, p" ||y1(,r)|| — 0 as p — oo. Then, it is possible
to apply Lemma 2.3 with t = rand v = v;, i € I}, 1 <k <s¢. In this case, by
(pl) and (p2), t,, =k, I,; = 0 and hence, for j € j,ﬂ =Jr, o, (J) = a0 (j) =
I* () = dx. Then, from (11), we have

(r)
S alal) + =10 S w22+ Ry + w0 =0,

JE€Jk JE€Jk

where now f,(j) =1+, y’p l/d"

Note that we have replaced J; by J; because v; (j)=0forje Ji\Jk. For
simplicity of notation, the equation above can be rewritten as

(=1 vl DB, () = BU) + Ry(i) + W, (1), (13)

JE€Jk
where B(i) = —dj, > ies, vilA)er (), W, (i) = —di W,(i) and

Ry(i) = —(p = 1" > w(NB, ()"0 (DR () = oo = ' 11D

J€Jk

Next, we transform Eq. (13), for i € Iy, 1<k<sp, to a nonsingular linear
system of order myg x my. Indeed, since yl(,’) € ¢, there are real numbers
Ap(t), 1<t<m, such that

= i Jp(t)vy

t=1

Then from (13), we obtain, for i € I, 1 <k <sy,

-1 Y u i J) = B+ Ry() + Wy(0). (14)

JE€Jk

Observe that the sum on ¢ in (14) extends only for indices ¢ € J;
with 1</<k, because if j € Ji, then v, (j) =0 for t€J, with /> k.
The set of equations in (14) is a linear system which can be expressed
as

(p— 1" DAM"AT = B+ R, + W,, (15)
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where D is the diagonal matrix by blocks given by

My 0 0
0 My 0

D= .
0 0 M

Ap = (0i)ijjesxs, 18 the diagonal matrix with J; = B,(jY~* and A, =
(Zp(1),. .., Ap(myg)). If we denote A(p) = DA, M7, then an easy computation
shows that

MM 0 0
~ ~T ~ ~ T
. Mx»M,, MpM,, --- 0
A= lim A(p) = )
pP—©
A ~ T ~ ~ T ~ ~T
MSoSoMlxo MSUJ‘O Mzs(] e MSOSOMSOSO

where M is the matrix obtained multiplying each column of M; by
en (/24 §f j e Ji.. Then

S0
det(4) = [ det(M:4;) #0

i=1

and so the matrix A(p) is nonsingular for p large enough. Solving system
(15), we get

(p - I)H_l/l]? = A(p)_](B+RP + WP)>

and so (p — 1) |4, || <[[4(p) " I(1BIl + IR, || + |, ]])). Hence,

1 14(p) 11 1R, ] 11| & ;
-1 ||/1p||<1—m><llfl(p) CBI =+ 117, 1)-

Taking limits as p — oo we have

Jim (o= 14,147 1B
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Similarly,

Bl<to— 1A 1R ) W
I1BlI< (=1l ,,|< Yoo ey T

and therefore

B
im (9~ 114,12 1
p—00

Finally, we conclude that

&

< lim (p — DAl <1BI] 1471

S

Observe that we have actually proved that (p — 1)""" |y,(f>( J)| is bounded for
j € Jo. Now our proposal will be to prove that (p — 1)"+1|y,<,r)( J)| is also
bounded, for all j € J; (in case that s#so and J;# (). Suppose the contrary.
Using a subsequence if necessary, we consider the vector u € R" whose
coordinates are given by

0
u(j) = Jlim /pk<5>] )
> lype |

Note that u € 7", ||u|| = 1 and u(j) = 0 if (p — 1)"*'[3Y’ (/)| is bounded. In
particular u(j) = 0 for all j € Jy and so 1, = 5. Applying (2) with v = u and
particularizing for p = p, we get

> ulDlhy (NP sgn(hy, () =0, (16)

JjeTs

with Jy, (/) = S0y 254950 ()).

Also, observe that ||o||; #0 for some / € {1,...,r}. Otherwise, from (16),
we have, for k large enough,

1
Zlu iy (D=0,

jeJ

and we obtain a contradiction.
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Since (p — 1)’|\y,(,r)|| — 0 as p — oo, we can apply Lemma 2.3 with v = u.
In this case, (11) yields,

> ulj)er1,(j) sen(o, ()

50
JeJy

(r)
= 1S WY R ) + W =

Particularizing the equation above for p = p; and taking limits as k — oo,
we get another contradiction. 1

_/'EJ:

LemMA 3.2. Under the same conditions of Theorem 3.1, let r € N and
suppose that there are oy € V", 1 <I<r — 1, such that

(r 1)

h, = h%,

If (p—1) ||yp 1)|| is bounded, then there exists lim, ... (p — )ry,(,rfl) ev.

r—1
Y|

Proof. Since (p—1)"||y, || is bounded, we can take a subsequence

pr — oo such that (px — 1)"3)1(]’[1) converges. We define

_ hm (pk )VPI( )7

and we set
hy, = = h*

V=g~ /(p - 1)

First, note that (p — 1)" ||yp || is also bounded. Now, our claim is that
(r) :
(p—1)p,” — 0 as p— oco. On the contrar;/ suppose that there exists a
subsequence pj, — —+oo such that (p), y ;= u#0. We will show that in
this case we get a contradiction. Indeed, since u € ¥, applying (2) with
v = u, we have,

> ul i)' sgn(hy(j)) =0 for all p > 1. (18)
jed
Observe that if #, = s then |[|o[|; #0, for some / € {1,...,r}. Otherwise,
particularizing (17) and (18) for p = p), we have, for k large enough

> u(j)hy () =0

Jjeds

yp , (17)

where y,()

and we get a contradiction.



286 QUESADA, MARTINEZ, AND NAVAS

We consider three exhaustive cases.
(@) If r > 1 and /[, <r — 1, then we apply Lemma 2.3 with t =7 — 1 and
v = u. In this case, from (11)

> u(i)er1-,(j) senloy, ()

.50
JeJy,

(g
_ r p—2 Vp (]) . _
+ (=1 Y u(HB() |%(m(l +R,())+ W, =0. (19)

]EJ

u

Particularizing (19) for p = pi and taking limits as k — oo, we have

Z u(j)er—1-1,(j) sgn(oy, (j)) = 0.

/EJ

u

Now, taking limits in (19) as k — oo with p = p}, we get

u(j)’ o ()
]Z B <j>|e"p< () ) =0

u

which is a contradiction.
(b) If [, = r, then in particular 7, = s and (18) gives

. (r) ) p—1
5 )P = 1y 2D st )+ 0= 1)300)
je? s s
RO
£ 3 |1+ o= 1) "’r((])) sen(o(j) + (0 — )90 () = 0. (20)
jGJX

From Lemma 3.1, we deduce that (pp — 1)"+l||y,(,:)|| is bounded. Hence

particularizing (20) for p = px, using a subsequence if necessary and taking
limits as k — oo, we obtain

3" u()e” ) sgn(a, () =0,
jel,
r+1_(r)

where w(j )O— limg_—oo (pr — 1) 95/ (j)- In partlculdr we deduce that there
exists jy € J, such that u(jo)o.(jo) > 0. But, if j € J and u(j)o,(j) > 0, then

0, ;
P (J) '
lim (1+(p§c—1)’ i ) IO
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and sgn(e, (/) + (p) — 1)"y;fk>(j)) = sgn(u(})), for k large enough. On the

other hand, if j € .72 with u(j)a,(j) <0 and |u(j)| > |o (/)| then for k large
enough,

sen(z (/) + (7} — 15 () = sen(u().

Finally, if j € J. with u(j)z(j) <0 and |u(j)|<|o,(;)| then

"

Ty (J) u(j)
lim |1+ (p, — 1)~ :’1+ .‘<1.
dm )t = U %)

So, taking limits in (20) as k — oo, with p=p;, we obtain a
contradiction.

(¢) If r =1 and /, = 0, then, in particular 7, = k with 1<k <sp. In this
case, from (18), we have

Zu( ) <1 +oc1(j)/dk JrN[(Il)(j)>p1
! p—1 d.

J€Jk

+ Y u())

jeN

p—1

I sonti () = 0.

Particularizing this equation for p=p; and p, and taking limits
as k — oo we get immediately a contradiction. Indeed, for p = p;, we
obtain

Z u(j)eou(j)/dk -0

JEJK
and for p = p|,

Z u( j)er D/ degn/de — g,

J€Jk

We conclude our assertion, taking into account that z(e* — 1) > 0, for all
z e R\{0}.

Remark 3.1.  Using the geometric series expansion, one gets for p > 1:

1 1 I 1 1
p—l_p(l—l/p)_pzp"—;p’"

i=0
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So, after rearranging terms, the expansion in (12) can also be written as one
in the standard form

hp—/’l* Zﬁxr+yp7

v=1
where [[7)[| = 0(p~").

Remark 3.2.  Let us observe that if 3, ; vi(j) = 0for all i € [ and all
1 <k <y, then, from (4), 0<a< 1. In this case, as a consequence of Theorem
2.1, p¥||h, — k% || — 0 for all k € N and hence (12) holds immediately for
oy =0€eR" for all /=1,...,r. Therefore, in order to get nontrivial
expansions of /,, we must assume that ., v;(j)#0 for some i€ I,
1<k<sy.

Remark 3.3. 1In [3], the authors suggest the asymptotic expansion,

e

They apply the series above to obtain good estimations of /% by means of
extrapolation techniques. However, to our knowledge, there was not any
proof of this formula.

"B‘w
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